Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

G. Kalpana and K. Vidyasagar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

Correspondence e-mail: kvsagar@iitm.ac.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.031 \AA$
R factor $=0.068$
$w R$ factor $=0.181$
Data-to-parameter ratio $=15.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

$\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$: a redetermination and correction

The title compound, tetraethylammonium hexa- μ_{3}-oxo-hexa-μ_{2}-oxo-tetradecaoxooctamolybdate, contains discrete centrosymmetric $\alpha-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anions and, for charge compensation, four tetraethylammonium cations per anion. The compound reported by Lu, Haung, Huang \& Haung [(1989). Jiegou Huaxue, 8, 23-26] is evidently isostructural with the title compound, although Lu et al. formulated their phase as having a composition of $\left\{\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]^{+}\right\}_{2} \cdot 2 \mathrm{H}^{+} \cdot\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$.

Comment

Single crystals of the title compound, (I), were formed inadvertently in one of our exploratory hydrothermal syntheses aimed at new oxides in the quaternary $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N} / \mathrm{Mo} / \mathrm{Sb} / \mathrm{O}$ system. Compound (I) contains discrete centrosymmetric α $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anions (Fig. 1) and, contrary to the previous incorrect formulation (Lu et al., 1989), four tetraethylammonium (TEA) cations for charge compensation. The structure reported by Lu et al. (1989) is evidently the same as (I), but they formulated its composition as $\left\{\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]^{+}\right\}_{2} \cdot 2 \mathrm{H}^{+} \cdot\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$, i.e. containing two only TEA cations and two protons, the latter occurring in unspecified locations.

Received 17 August 2005 Accepted 24 August 2005 Online 31 August 2005

The α form of the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anion is one of no fewer than eight structural modifications of this species (Allis et al., 2004). The α form consists of a ring of six edge-shared MoO_{6} octahedra, bicapped by two MoO_{4} tetrahedra. The values of the molybdenum/oxygen bond lengths and angles in (I) agree with those reported for other α - $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anions in the literature (Fuchs \& Hartl, 1976; Day et al., 1977; Hsieh et al., 1987; Burkholder \& Zubieta, 2005).

Experimental

A mixture of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NOH}$ (Fluka, $0.43 \mathrm{ml}, 2.92 \mathrm{mmol}$), MoO_{3} [Paxmy (India), $0.4236 \mathrm{~g}, 2.94 \mathrm{mmol}$], $\mathrm{Sb}_{2} \mathrm{O}_{3}$ [E-Merck (India), $0.1429 \mathrm{~g}, 0.490 \mathrm{mmol}$] and water $(4.2 \mathrm{ml})$ was heated at 498 K in a 23 ml Teflon-lined acid digestion bomb for 3 d and the oven was then switched off. Colourless needle-shaped cyrstals of (I) were recovered from the bomb along with a yellow powder of unidentified composition. The initial and final pH values were 10 and 6 , respectively. No attempts were made to synthesize (I) as a single phase.

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \\
& M_{r}=1704.52 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=11.836(6) \AA \\
& b=20.032(7) \AA \\
& c=12.089(12) \AA \\
& \beta=105.04(7)^{\circ} \AA \\
& V=2768(3) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
D_{x}=2.045 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10-15^{\circ}$
$\mu=1.83 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block cut from needle, colourless $0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection
Enraf-Nonius CAD-4
\quad diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968)
$\quad T_{\min }=0.550, T_{\max }=0.693$
5097 measured reflections
4851 independent reflections
3807 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.020 \\
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 14 \\
& k=0 \rightarrow 23 \\
& l=-14 \rightarrow 13
\end{aligned}
$$

2 standard reflections frequency: 60 min intensity decay: none

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0376 P)^{2} \\
&+76.2716 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=2.70 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.07 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.181$
$S=1.18$
4851 reflections
316 parameters
H -atom parameters constrained

Figure 1
View of the α-[$\left.\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anion in (I), showing 50% displacement ellipsoids. [Symmetry code: (i) $1-x, 1-y, 1-z$.]

Farrugia, 1999); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the Sophisticated Analytical Instrument Facility of our institute for the data collection.

References

Allis, D. G., Burkholder, E. \& Zubieta, J. (2004). Polyhedron, 23, 1145-1152. Burkholder, E. \& Zubieta, J. (2005). Inorg. Chim. Acta, 358, 116-122.
Day, V. W., Fredrich, M. F., Klemperer, W. G. \& Shum, W. (1977). J. Am. Chem. Soc. 99, 952-953.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fuchs, J. \& Hartl, H. (1976). Angew. Chem. Int. Ed. Engl. 15, 375-376.
Hsieh, T. C., Shaikh, S. N. \& Zubieta, J. (1987). Inorg. Chem. 26, 4079-4089.
Lu, S., Haung, J., Huang, Z \& Haung, J. (1989). Jiegou Huaxue, 8, $23-26$.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

